CCMT

Center For Compressible Multiphase Turbulence Overview

Principal Investigator:

S. Balachandar

Department of Mechanical and Aerospace Engineering University of Florida

Outline

- Demonstration Problem
- Unique Multiscale Approach
- Software Plan
- Exascale Emulation
- V&V, UQ Innovations
- UF Team & Partnership
- NNSA Interaction

Center for Compressible Multiphase Turbulence

Purpose of the Center

- To radically advance the field of CMT
- To advance predictive simulation science on current and near-future platforms with uncertainty budget as backbone
- To advance a co-design strategy that combines exascale emulation, exascale algorithms, exascale CS
- To educate students and postdocs in exascale simulation science and place them at NNSA laboratories

Demonstration Problem

- Integrated simulations
- Experimental measurements for validation

Extreme Multiphase Flow

We desire to perform predictive simulation of these flows with as much multi-scale physics as possible

Single Discipline, But Multi-Physics

Complex interactions require a unified approach

- Shock-particle interaction
- Additional shocks and expansions
- Strong flow modification

Compressible Multiphase Turbulence

- Our focus will be on
 - Turbulence at the rapidly expanding material front
 - Rayleigh-Taylor (RT) and Richtmeyer-Meshkov (RM) instabilities induced turbulence
 - Multiphase instability and particulate mixing at the front
 - Self-assemble of explosive-driven particles
- We will minimize the following complications
 - Free-shear and wall turbulence (stay away from boundaries)
 - Detonation physics (use simple, well-studied explosives)
 - Fragmentation or atomization physics (avoid casing, liquids)
 - Reactive physics (use non-reactive metal particles)

Multiscale Approach

Multiscale Coupling Strategy

Multiscale Coupling Strategy

- Our approach is similar in spirit to many ongoing multiscale efforts
 - "Divide, Bridge, and Conquer" strategy
- Unique aspects of present approach
 - Lagrangian particles preserve heterogeneity and anisotropy
 - Opportunities for concurrent macro, meso and microscale simulations
 - But there is no dimensionality reduction as in contact-line problems

Scientific Issues to be Addressed

At Micro to Mesoscale

- Mass, momentum and energy coupling at extreme conditions of pressure and temperature
- Understand and modeling of particle-particle, wake-particle and wake-wake interactions

At Meso to Macroscale

- Extend understanding of Rayleigh-Taylor and Richtmeyer-Meshkov instabilities to multiphase flows
- Establish the statistical properties of the interfacial multiphase turbulence
- Physics of particle self-assembly into focused jets

Master Plan

- Problem Hierarchy: to systematically validate our multiscale framework and establish uncertainties
- Systems Engineering Plan: to build on existing codes and simulation framework for current petascale and future exascale capability
- Simulation Road Map: that organizes the proposed integrated simulations and work towards exascale

Multi-scale Problem Hierarchy

Multiscale Problem Hierarchy

Multiscale Problem Hierarchy

Simulation Roadmap

CCMT
T1- 16

Rocfun – Existing Integrated Code

- Developed under ASAP program & continued at University of Florida
- Mature code, used in several projects, demonstrated scalability
- Unified code for microscale, mesoscale and macroscale simulations
- Extensively verified, detailed documentation, rigorous validation

Co-design: Rocfun + Nek5000 = CMT-Nek

Scalability to Million Processes

- Scales beyond 1 million
 MPI processes:
 - 524288 cores
 - 1 or 2 ranks / core
 - 60% parallel efficiency at1 million processes
 - Scalable multigrid solvers:
 - 15 iterations/step
 - Scalable I/O: 72 GB/sec

Exascale Emulation with FPGAs

Multiscale approach to Exascale studies:

Exploration of Exascale devices, nodes, and systems, represented by fabrics of interconnected
 Architecture BEOs (behavioral emulation objects)

- MICRO: study and characterization of devices for Exascale
 - Fabric of BEOs representing key resources at <u>device scale</u>
 - Processor cores, memory hierarchy, chip-level interconnect, I/O
- MESO: study and characterization of nodes for Exascale
 - Fabric of BEOs representing key resources at <u>node scale</u>
 - Processor devices, memory, server-level interconnect, storage
- MACRO: study and characterization of systems for Exascale
 - Fabric of BEOs representing key resources at <u>system scale</u>
 - Processing nodes, system-level interconnect, storage
- Architecture BEOs stimulated by corresponding set of Application BEOs

Uncertainty Budget – Backbone of CCMT

- Periodic experiments and simulations of "Demonstration Problem" essential to establish uncertainty deficit
- We will determine contributions of models to uncertainty of demonstration problem
 - Multiscale uncertainty propagation with Bayesian updating and successive surrogates
 - Physics-inspired surrogate modeling for up-scaling
- Prioritize based on potential for reducing uncertainty
 - Improvements in physical models
 - Improvements in numerics and simulation roadmap
 - Improvements in experimental procedure/measurements
- Essential for achieving accuracy targets here and at NNSA

Decision Making with Uncertainty Budget

Uncertainty Budget – Implementation

- A dedicated research staff will be in charge of doing the overall uncertainty budget
- Will be assisted by a graduate student
- Will closely interact and obtain uncertainty information from other research staff and students
- Uncertainty budget will be used by Simulation/ Experiments
 Planning & Review Team (SEPRT)
- Uncertainty budget will be used by Exascale Co-Design Team (ECT)
- Uncertainty budget will be used by Center Management
 Committee for resource allocation

Exascale Emulation Uncertainty Budget

Same cycle for notional and exascale platforms but with uncertainty quantification and propagation

V&V UQ- Unique Aspects

- Uncertainty budget driven decision making
 - Validation that each change in models and experimental procedure improves prediction capabilities
- Pushing parallels between CMT multiscale modeling and multi-level exascale emulation
- Advanced techniques for reducing cost of uncertainty propagation
 - Hybrid surrogates and multiple surrogates.
- Novel techniques for extreme quantities and rare events
- Cross-cutting team-based approach to V&V and UQ

UF Team & Partnership

CCMT

Petascale, 18 Years, 6 Joint publications

Tasks and Teams

The Center will be organized by physics-based tasks and cross-cutting teams, rather than by faculty and their research groups.

NNSA Interaction Goals

Research Exchange

- Maintain center's focus on areas of relevance to NNSA and avoid duplication
- Leverage ongoing cuttingedge research at Labs
 - Experimental data for validation
 - Exascale emulation and simulation, proxy-apps

Relationships and Feedback

- Emphasize staff/student interaction with NNSA
 - Facilitate future employment at NNSA labs
 - Nurture existing and build new relationships

New Curriculum

- Graduate Certificate in "Scientific Computing"
 - PSAAP-II main beneficiary

Exascale Interactions

Experimental Interactions

CMT Physics Interactions

Software Interactions

Summary

- Compressible multiphase turbulence (CMT) is a science problem of strong relevance to NNSA
- We have developed a unique multiscale approach to answer important scientific questions
- Innovations in exascale emulation and UQ techniques
 will enable predictive exascale simulations of CMT
- We have assembled an outstanding team
- We look forward to close interaction with NNSA Labs

Do you have any questions?

Explosive Spherical Dispersion

We desire to perform predictive simulation of these flows with as much multi-scale physics as possible

How Different Pieces Fit

